" X(0] xL0]

Revisiting X[1] x[1]
convolutions X[2] x[2]
X[3] X[3]

X[4] x[4]

X[5] X[5]

X[6] x[6]

X[7]} x[7]
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Definition

Definition The convolution of two functions f and g is denoted by * as the integral of the
product of the two functions after one is reversed and shifted

(f * g)(D) & j F)g(t— 1) dr = j F(t—Dg (D) de
a b

o Forimages a,. =X *W =i o2 pXr_jc—j " Wij

o To generalize to graphs, we must understand convolutions to their core

o Let’s check some properties of what makes convolution a convolution
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Convolutions matrices Weight matrix w

o Fully connected < Full matrix multiplication

o Convolution & Block diagonal matrix multiplication = Convolutional weight matrix w
- Sharing weights after shifting them N

Vi = Wji—1Xi—1 + WjiX; + Wjip1Xi41
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Convolutions as circulant matrices

o Convolutional matrices C(w) are circulant

o Multidiagonal matrices
> Each column (row) as above but shifted once to the right (below)

C1| C3 Co
C(w) =|C2 €1 C3
Co C

(3] €2 1. _

https://towardsdatascience.com/deriving-convolution-from-first-principles-4£f124888028
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Circulant matrices commute

o In general
A-B#B-A

o For circulant matrices
Cw)-C(u) =C(u)-C(w)

o = Convolutions commute

C(w) C(u) C(u) C(w)
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The shift operator

o Forw =10,1,...,0] = C(w) the right-shift operator
o Similar to convolution: ‘shift once’ to the right
> Transpose for left-shift

o The shift operator is an orthogonal matrix

o The shift operator is also circulant

Al O-CNl

0 - () [
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Circulant matrices < Translation equivariance

o Circulant matrices enable translation equivariance to convolutions
> Change the location of the input

> The results will be the same (but shifted)

| 1
C(w) sT g7 C(w) C ' -
shift operator shift operator

lllustration of shift equivariance as the interchangeability of shift and blur operations.
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All circulant matrices have the same eigenvectors!

https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

o The eigenvalues of the circulant matrices are different

o But the eigenvectors always the same!
> The eigenvectors of the “translation transformation/operator”
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All circulant matrices have the same eigenvectors!

https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

o The eigenvalues of the circulant matrices are different

o/ But the eigenvectors always the same!
> The eigenvectors of the ”translati{on transformation/operator”

In [26]: A = circulant([-1, 2, 1, 8, 8]) In [48]: v = np.random.rand(3)

print('Circulant matrix') z = np.zeros(2)
print(A) A = circulant(np.append(v, z))
print('Circulant matrix')

eigvals, eigvecs = np.linalg.eig(A) print(A)

print('\nEigenvalues")

print(eigvals) eigvals, eigvecs = np.linalg.eig(A)

print(’\nEigenvalues’)
print(eigvals)

print( \nEigenvectors’}

print(eigvecs) print('\nEigenvectors')

print(eigvecs)

Circulant matrix Circulant matrix

[-1 & @ 1 2] [[e.87 8. ®©. @.61 8.13]

[2-1 e @ 1] [@.13 8.87 @. 6. ©.61]

[1 2-1 @ 8] [@.61 8.13 @.87 8. @. |

[@ 1 2-1 8] [@. 6.61 .13 8.87 8. |

[e & 1 2-1]] [e. 8. @.61 8.13 8.87]]

Eigenvalues Eigenvalues

[ 2. +8.5 -1.19+2.49§ -1.19-2.49j -2.31+8.22§ -2.31-8.227] [1.61+8.] @.42+0.42j 6.42-0.43] 0©.95+48.5j @.05-8.5j ]

Eigem{ectors Eigen\fectors

[[ ©.45+8.7 8.14-8.437 8.14+8.43] -98.36+0.26] -8.36-8.267] [[ 8.45+8.7 ©.14-8.437 ©.14+48.43] -08.36-8.26] -8.26+0.26]]

[ 8.4548.§ -0.26-8.267 -8.36+0.267 ©.45+0.] 2.45-8.7 ] [ ©.45+8.] -9.36-8.26] -0.36+8.26] 8.45+0.] 8.45-0.3 ]

[ 8.45+@8. -8.36+8.26F -0.36-0.267 -0.36-8.26] -0.36+8.267] [ @.45+8.7 -8.36+48.26] -0.36-0.26] -0.36+0.26] -8.36-0.26]]

[ 0.4540.7  ©.1448.43] ©.14-0.437 ©.1448.43] ©.14-8.437] [ @.45+8.7  ©0.1440.43] 0.14-8.43] 6.14-6.43] 0.144+0.43]]

[ ©.4548.5  ©.4546.  ©.45-8.7  ©.14-8.43] ©.14+48.437]] [ @.45+8.]  @.45+0.]  0.45-0.]  0.14+0.43] 0.14-6.43]]]
E — I
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Circulant eigenvectors & Shift eigenvectors

o All circulant matrices have the same eigenvectors (or better eigenspace)
o The shift operator is a circulant matrix

o The circulant eigenvectors are the eigenvectors of shift
- No wonder they are the same: shift is always the same

o Any convolution with any filter w involves the same eigenvectors!
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Eigenvectors of circulant matrices

o The k-th eigenvector of n X n circulant

— O.k —
wn - - B n
1k X[O] X[O]
Wy -
ek) = 2-k where w, = exp(zn ! A -
(Un ’ n n X[2] x[2]
: X[3
(n_l).k [ ] X[3]
| Wp - X4l )
o Collecting all eigenvectors (6] 6]
X
CI) = [e(o) e(l) e(z) oo e(n_l)] X[7] x[7]
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Circulant matrix eigenvectors = Discrete Fourier Transform

o This looks a lot like Discrete Fourier Transform
> The computer friendly Fourier Transform

N-1 2w
X, = E Ty 8 N
n={}

—NEL Neoo( 2% i) — -sin{ ZZin
—Fﬂsn.n cos| = i = ,

o Convolution & Discrete Fourier Transform

xxw=_0Cw)- x
Matrix diagonalization 2@ - Aw) - D)

- X
=¢ - (A(W) . ((])* . x)) «<— (Convolution theorem

Discrete Fourier Transform (with DFT matrix)

1
Inner product with eigenve‘ﬂues of weight matrix
Y
Inverse Discrete Fourier Transform (with Inverse DFT matrix)

J
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Convolution theorem

o The Fourier of a convolution equal to dot product of individual Fouriers

F{f g} =F{f} OFlg} = f g =F {F{f} O Flg}}

o Convolution in “time/space” domain is equivalent to
matrix multiplication in “frequency/spectral” domain

- Frequency defined by Fourier bases exp(— l%n - kn )

o Discrete case F{f} becomes a matrix multiplication with shift DFT matrix
wxx=®d 1(AW) (P x))
F{f) Flg)

L J
1

j:'—l
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Convolution theorem: x xw = @ - (A(w) (D™ - x))

Circulant matrix

C(w)
—— » W x X
d||d* DFT IDFT P || P*
X - — W *x X
Wy
ﬁ‘fn_

Element-wise product

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Convolution theorem: x xw = @ - (A(w) (D™ - x))

o If we can compute (inverse) Fouriers and their inverse fast, then we are game

o Fast Fourier Transform (FFT): A faster version of DFT
> 0(nlogn) vs 0(n?)
> Replace sliding window convolutions with very fast matrix multiplications

o Convolution as diagonalization of convolutional circulant matrix

Circulant matrix

C(w) W x

X
dl”tb* DFT IDFT ¢]|¢*

X W* X
Wy
Wy

Element-wise product

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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So what?

o A more core understanding of what actually convolutions do

o Can we generalize to other equivariances beyond translation?
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Group Equivariant Deep Learning

Group convolutional neural networks! (G-CNNs) improve over
classical CNNs by:

- Allowing weight sharing beyond just translations

- Making geometric data augmentations obsolete

Symmetries in audio®
(translation, scale/pitch)

L Lo[v)(a,5)

I HLalol(05) [ %6 ¥](u.5)
- Data efficiency (one example at a some pose is enough) = : -
- Deal with context (relative poses, like capsule nets) v L] .
Pt f X! RO

Symmetries in computer vision3*
(translation, scale, rotation, perspective)

(translation, rotation, scale)

Low-level features
(e.g. local surfaces)

features can appear at arbitrary
locations, angles, and scales

Mid-level features
(e.g. vessel segments) y

&5
VA

Low-level features arranged at
relative angles and displacements
form mid-level features

Symmetries in medical image analysis??3

Molecular and Physical systems®
(translation, rotation, reflection)

>
-
Y

Mid-level features arranged at
relative angles and displacements
form high-level features such as
bifurcations

[1] Cohen and Welling "Group equivariant convolutional networks” ICML 2016. [2] Bekkers and Lafarge et al. "Roto-translation covariant convolutional networks for medical image analysis." MICCAI 2018. [3]
Bekkers “B-spline CNNs on Lie groups” ICLR 2020 [4] Sosnovik, Szmaja, and Smeulders "Scale-equivariant steerable networks." ICLR 2020 [5] Romero, Bekkers, Tomczak, Hoogeboom "Wavelet Networks: Scale
Equivariant Learning From Raw waveforms.” arXiv:2006.05259 (2020). [6] Finzi, Marc, et al. "Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data." ICML 2020.



So what?

o A more core understanding of what actually convolutions do
o Can we generalize to other equivariances beyond translation?

o Can we generalize to other structures, like graphs?
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