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Definition The convolution of two functions 𝑓 and 𝑔 is denoted by ∗ as the integral of the 

product of the two functions after one is reversed and shifted

𝑓 ∗ 𝑔 𝑡 ≝ න
−∞

∞

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 = න
−∞

∞

𝑓 𝑡 − 𝜏 𝑔 𝜏 𝑑𝜏

o For images 𝑎𝑟𝑐 = 𝒙 ∗ 𝒘 = σ𝑖=−𝑎
𝑎 σ𝑗=−𝑏

𝑏 𝑥𝑟−𝑖,𝑐−𝑗 ⋅ 𝑤𝑖𝑗

o To generalize to graphs, we must understand convolutions to their core

o Let’s check some properties of what makes convolution a convolution

Definition
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o Fully connected ⇔ Full matrix multiplication

o Convolution ⇔ Block diagonal matrix multiplication
◦ Sharing weights after shifting them

Convolutions matrices Weight matrix 𝑤

𝑥𝑖 𝑥𝑖+1𝑥𝑖−1

𝑦𝑗

𝑦𝑗 = 𝑤𝑗1𝑥1 +⋯+𝑤𝑗𝑛𝑥𝑛

=෍

𝑖

𝑤𝑗𝑖𝑥𝑖

𝑥𝑖 𝑥𝑖+1𝑥𝑖−1

𝑦𝑗

𝑦𝑗 = 𝑤𝑗,𝑖−1𝑥𝑖−1 + 𝑤𝑗,𝑖𝑥𝑖 + 𝑤𝑗,𝑖+1𝑥𝑖+1

Convolutional weight matrix 𝑤
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o Convolutional matrices 𝐶(𝑤) are circulant

o Multidiagonal matrices
◦ Each column (row) as above but shifted once to the right (below)

Convolutions as circulant matrices

𝐶(𝑤) =

𝑐1 𝑐3 𝑐2
𝑐2 𝑐1 𝑐3
𝑐3 𝑐2 𝑐1

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

𝑤
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o In general

𝐴 ⋅ 𝐵 ≠ 𝐵 ⋅ 𝐴

o For circulant matrices

𝐶 𝑤 ⋅ 𝐶 𝑢 = 𝐶 𝑢 ⋅ 𝐶(𝑤)

o ⇒ Convolutions commute

Circulant matrices commute
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o For 𝑤 = 0, 1, … , 0 ⇒ 𝐶(𝑤) the right-shift operator
◦ Similar to convolution: ‘shift once’ to the right

◦ Transpose for left-shift

o The shift operator is an orthogonal matrix

o The shift operator is also circulant

The shift operator



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 7

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 7 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 7 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 7 VISLab

o Circulant matrices enable translation equivariance to convolutions
◦ Change the location of the input

◦ The results will be the same (but shifted)

Circulant matrices ⇔ Translation equivariance
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o The eigenvalues of the circulant matrices are different

o But the eigenvectors always the same!
◦ The eigenvectors of the “translation transformation/operator”

All circulant matrices have the same eigenvectors!
https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb
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o The eigenvalues of the circulant matrices are different

o But the eigenvectors always the same!
◦ The eigenvectors of the “translation transformation/operator”

All circulant matrices have the same eigenvectors!
https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb
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o All circulant matrices have the same eigenvectors (or better eigenspace)
◦ The shift operator is a circulant matrix

o The circulant eigenvectors are the eigenvectors of shift
◦ No wonder they are the same: shift is always the same

o Any convolution with any filter 𝒘 involves the same eigenvectors!

Circulant eigenvectors ⇔ Shift eigenvectors 
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o The 𝑘-th eigenvector of 𝑛 × 𝑛 circulant

𝑒(𝑘) =

𝜔𝑛
0⋅𝑘

𝜔𝑛
1⋅𝑘

𝜔𝑛
2⋅𝑘

⋮

𝜔𝑛
(𝑛−1)⋅𝑘

, where 𝜔n = exp(
2π ⋅ 𝑖

𝑛
)

o Collecting all eigenvectors

Φ = 𝑒(0) 𝑒(1) 𝑒(2) ⋯ 𝑒(𝑛−1)

Eigenvectors of circulant matrices
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o This looks a lot like Discrete Fourier Transform
◦ The computer friendly Fourier Transform

o Convolution ⇔ Discrete Fourier Transform

𝒙 ∗ 𝒘 = 𝐶(𝒘) ⋅ 𝒙
= 𝚽 ⋅ 𝚲 𝐰 ⋅ 𝚽∗ ⋅ 𝒙

= 𝚽 ⋅ 𝚲 𝐰 ⋅ 𝚽∗ ⋅ 𝒙

Circulant matrix eigenvectors ⇒ Discrete Fourier Transform

Convolution theorem

Discrete Fourier Transform (with DFT matrix)

Inverse Discrete Fourier Transform (with Inverse DFT matrix)

Inner product with eigenvalues of weight matrix

Matrix diagonalization
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o The Fourier of a convolution equal to dot product of individual Fouriers

ℱ 𝑓 ∗ 𝑔 = ℱ 𝑓 ⊙ℱ 𝑔 ⇒ 𝑓 ∗ 𝑔 = ℱ−1 ℱ 𝑓 ⊙ℱ 𝑔

o Convolution in “time/space” domain is equivalent to
matrix multiplication in  “frequency/spectral” domain

◦ Frequency defined by Fourier bases exp(−
𝑖2𝜋

Ν
⋅ 𝑘𝑛 )

o Discrete case ℱ 𝑓 becomes a matrix multiplication with shift DFT matrix

𝒘 ∗ 𝒙 = 𝚽−𝟏 𝚲 𝐰 ⋅ 𝚽 ⋅ 𝒙

Convolution theorem

ℱ 𝑔

ℱ−1

ℱ 𝑓
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Convolution theorem: 𝒙 ∗ 𝒘 = 𝚽 ⋅ 𝚲 𝐰 ⋅ 𝚽∗ ⋅ 𝒙

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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o If we can compute (inverse) Fouriers and their inverse fast, then we are game

o Fast Fourier Transform (FFT): A faster version of DFT
◦ 𝑂 𝑛 log 𝑛 vs 𝑂 𝑛2

◦ Replace sliding window convolutions with very fast matrix multiplications

o Convolution as diagonalization of convolutional circulant matrix

Convolution theorem: 𝒙 ∗ 𝒘 = 𝚽 ⋅ 𝚲 𝐰 ⋅ 𝚽∗ ⋅ 𝒙

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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o A more core understanding of what actually convolutions do

o Can we generalize to other equivariances beyond translation?

So what?



Group Equivariant Deep Learning

Symmetries in medical image analysis2,3

(translation, rotation, scale)

Group convolutional neural networks1 (G-CNNs) improve over 
classical CNNs by:
- Allowing weight sharing beyond just translations
- Making geometric data augmentations obsolete
- Data efficiency (one example at a some pose is enough)
- Deal with context (relative poses, like capsule nets)

Symmetries in computer vision3,4

(translation, scale, rotation, perspective)

Symmetries in audio5

(translation, scale/pitch)

[1] Cohen and Welling "Group equivariant convolutional networks” ICML 2016. [2] Bekkers and Lafarge et al. "Roto-translation covariant convolutional networks for medical image analysis." MICCAI 2018. [3]
Bekkers “B-spline CNNs on Lie groups” ICLR 2020 [4] Sosnovik, Szmaja, and Smeulders "Scale-equivariant steerable networks." ICLR 2020 [5] Romero, Bekkers, Tomczak, Hoogeboom "Wavelet Networks: Scale 
Equivariant Learning From Raw waveforms.” arXiv:2006.05259 (2020). [6] Finzi, Marc, et al. "Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data." ICML 2020.

Molecular and Physical systems6

(translation, rotation, reflection)
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o A more core understanding of what actually convolutions do

o Can we generalize to other equivariances beyond translation?

o Can we generalize to other structures, like graphs?

So what?


