Revisiting convolutions

Definition

Definition The convolution of two functions f and g is denoted by * as the integral of the product of the two functions after one is reversed and shifted

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$$

• For images $a_{rc} = x * w = \sum_{i=-a}^{a} \sum_{j=-b}^{b} x_{r-i,c-j} \cdot w_{ij}$

- o To generalize to graphs, we must understand convolutions to their core
- Let's check some properties of what makes convolution a convolution

Fully connected ⇔ Full matrix multiplication

$$y_j = w_{j1}x_1 + \dots + w_{jn}x_n$$
$$= \sum_i w_{ji}x_i$$

- Convolution ⇔ Block diagonal matrix multiplication
 - Sharing weights after shifting them

$$y_j = w_{j,i-1}x_{i-1} + w_{j,i}x_i + w_{j,i+1}x_{i+1}$$

Convolutional weight matrix w

Convolutions as circulant matrices

- Convolutional matrices C(w) are circulant
- Multidiagonal matrices
 - Each column (row) as above but shifted once to the right (below)

$$C(w) = \begin{bmatrix} c_1 & c_3 & c_2 \\ c_2 & c_1 & c_3 \\ c_3 & c_2 & c_1 \end{bmatrix}$$

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Circulant matrices commute

In general

$$A \cdot B \neq B \cdot A$$

For circulant matrices

$$C(w) \cdot C(u) = C(u) \cdot C(w)$$

○ ⇒ Convolutions commute

The shift operator

- o For w = [0, 1, ..., 0] ⇒ C(w) the right-shift operator
 - Similar to convolution: 'shift once' to the right
 - Transpose for left-shift
- The shift operator is an orthogonal matrix
- The shift operator is also circulant

Circulant matrices ⇔ Translation equivariance

- Circulant matrices enable translation equivariance to convolutions
 - Change the location of the input
 - The results will be the same (but shifted)

Illustration of shift equivariance as the interchangeability of shift and blur operations.

All circulant matrices have the same eigenvectors!

https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

- The eigenvalues of the circulant matrices are different
- o But the eigenvectors always the same!
 - The eigenvectors of the "translation transformation/operator"

All circulant matrices have the same eigenvectors!

https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

The eigenvalues of the circulant matrices are different

OBut the eigenvectors always the same!

o The eigenvectors of the "translation transformation/operator"

```
In [26]: A = circulant([-1, 2, 1, 0, 0])
         print('Circulant matrix')
        print(A)
         eigvals, eigvecs = np.linalg.eig(A)
        print('\nEigenvalues')
        print(eigvals)
         print('\nEigenvectors')
         print(eigvecs)
         Circulant matrix
           2 -1 0 0 1]
           1 2 -1 0 0]
          [0012-1]]
         Eigenvalues
         [ 2. +0.j -1.19+2.49j -1.19-2.49j -2.31+0.22j -2.31-0.22j]
         Eigenvectors
         [[ 0.45+0.j
                       0.14-0.43j 0.14+0.43j -0.36+0.26j -0.36-0.26j]
                      -0.36-0.26j -0.36+0.26j 0.45+0.j 0.45-0.j
           0.45+0.j
                      -0.36+0.26i -0.36-0.26i -0.36-0.26i -0.36+0.26il
                       0.14+0.43   0.14-0.43   0.14+0.43   0.14-0.43   
           0.45+0.j
           0.45+0.j
                       0.45+0.j 0.45-0.j 0.14-0.43j 0.14+0.43j]
```

```
In [40]: v = np.random.rand(3)
         z = np.zeros(2)
         A = circulant(np.append(v, z))
         print('Circulant matrix')
         print(A)
         eigvals, eigvecs = np.linalg.eig(A)
         print('\nEigenvalues')
         print(eigvals)
         print('\nEigenvectors')
         print(eigvecs)
         Circulant matrix
         [[0.87 0. 0. 0.61 0.13]
          [0.13 0.87 0. 0.
          [0.61 0.13 0.87 0. 0.
          [0. 0.61 0.13 0.87 0.
               0. 0.61 0.13 0.87]]
         Eigenvalues
         [1.61+0.j 0.42+0.48j 0.42-0.48j 0.95+0.5j 0.95-0.5j]
         Eigenvectors
         [[ 0.45+0.j
                       0.14-0.43j 0.14+0.43j -0.36-0.26j -0.36+0.26j]
           0.45+0.j
                       -0.36-0.26j -0.36+0.26j 0.45+0.j 0.45-0.j
           0.45+0.j
                      -0.36+0.26j -0.36-0.26j -0.36+0.26j -0.36-0.26j]
           0.45+0.j
                       0.14+0.43j 0.14-0.43j 0.14-0.43j 0.14+0.43j]
           0.45+0.j
                       0.45+0.j 0.45-0.j 0.14+0.43j 0.14-0.43j]]
```

Circulant eigenvectors ⇔ Shift eigenvectors

- All circulant matrices have the same eigenvectors (or better eigenspace)
 - The shift operator is a circulant matrix
- The circulant eigenvectors are the eigenvectors of shift
 - No wonder they are the same: shift is always the same
- Any convolution with any filter w involves the same eigenvectors!

Eigenvectors of circulant matrices

The k-th eigenvector of $n \times n$ circulant

$$e^{(k)} = \begin{bmatrix} \omega_n^{0 \cdot k} \\ \omega_n^{1 \cdot k} \\ \omega_n^{2 \cdot k} \\ \vdots \\ \omega_n^{(n-1) \cdot k} \end{bmatrix}, \text{ where } \omega_n = \exp(\frac{2\pi \cdot i}{n})$$

O Collecting all eigenvectors
$$\Phi = \begin{bmatrix} e^{(0)} & e^{(1)} & e^{(2)} & \dots & e^{(n-1)} \end{bmatrix}$$

Circulant matrix eigenvectors ⇒ Discrete Fourier Transform

- This looks a lot like Discrete Fourier Transform
 - The computer friendly Fourier Transform

$$egin{align} X_k &= \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn} \ &= \sum_{n=0}^{N-1} x_n \cdot \left[\cos\left(rac{2\pi}{N}kn
ight) - i \cdot \sin\left(rac{2\pi}{N}kn
ight)
ight], \end{split}$$
 (Eq.1)

○ Convolution ⇔ Discrete Fourier Transform

Matrix diagonalization
$$x * w = C(w) \cdot x$$

$$= (\Phi \cdot \Lambda(w) \cdot (\Phi^* \cdot x)) \leftarrow \text{Convolution theorem}$$

$$= \Phi \cdot (\Lambda(w) \cdot (\Phi^* \cdot x)) \leftarrow \text{Convolution theorem}$$
Inner product with eigenvalues of weight matrix

Inverse Discrete Fourier Transform (with Inverse DFT matrix)

Convolution theorem

The Fourier of a convolution equal to dot product of individual Fouriers

$$\mathcal{F}\{f*g\} = \mathcal{F}\{f\} \odot \mathcal{F}\{g\} \Rightarrow f*g = \mathcal{F}^{-1}\{\mathcal{F}\{f\} \odot \mathcal{F}\{g\}\}\}$$

- Convolution in "time/space" domain is equivalent to matrix multiplication in "frequency/spectral" domain
 - Frequency defined by Fourier bases $\exp(-\frac{i2\pi}{N} \cdot kn)$
- Discrete case $\mathcal{F}{f}$ becomes a matrix multiplication with shift DFT matrix

$$w * x = \Phi^{-1}(\Lambda(w) \cdot (\Phi \cdot x))$$

$$\mathcal{F}_{\{f\}} \qquad \mathcal{F}_{\{g\}}$$

Convolution theorem: $x * w = \Phi \cdot (\Lambda(w) \cdot (\Phi^* \cdot x))$

spatial domain

frequency domain

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Convolution theorem: $x * w = \Phi \cdot (\Lambda(w) \cdot (\Phi^* \cdot x))$

- o If we can compute (inverse) Fouriers and their inverse fast, then we are game
- Fast Fourier Transform (FFT): A faster version of DFT
 - $\circ O(n \log n) \text{ vs } O(n^2)$
 - Replace sliding window convolutions with very fast matrix multiplications
- Convolution as diagonalization of convolutional circulant matrix

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

So what?

- A more core understanding of what actually convolutions do
- Can we generalize to other equivariances beyond translation?

Group Equivariant Deep Learning

Group convolutional neural networks¹ (G-CNNs) improve over classical CNNs by:

- Allowing weight sharing beyond just translations
- Making geometric data augmentations obsolete
- Data efficiency (one example at a some pose is enough)
- Deal with context (relative poses, like capsule nets)

Symmetries in audio⁵ (translation, scale/pitch) $f(\bar{u}, s) = \int_{\bar{v}} f(\bar{u}, s) \int$

Symmetries in computer vision^{3,4} (translation, scale, rotation, perspective)

Symmetries in medical image analysis^{2,3}

(translation, rotation, scale)

Molecular and Physical systems⁶

(translation, rotation, reflection)

[1] Cohen and Welling "Group equivariant convolutional networks" ICML 2016. [2] Bekkers and Lafarge et al. "Roto-translation covariant convolutional networks for medical image analysis." MICCAI 2018. [3] Bekkers "B-spline CNNs on Lie groups" ICLR 2020 [4] Sosnovik, Szmaja, and Smeulders "Scale-equivariant steerable networks." ICLR 2020 [5] Romero, Bekkers, Tomczak, Hoogeboom "Wavelet Networks: Scale Equivariant Learning From Raw waveforms." arXiv:2006.05259 (2020). [6] Finzi, Marc, et al. "Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data." ICML 2020.

So what?

- o A more core understanding of what actually convolutions do
- o Can we generalize to other equivariances beyond translation?
- o Can we generalize to other structures, like graphs?